Cloning and relation to plasmids

The use of cloning is interrelated with recombinant DNA in classical biology, as the term "clone" refers to a cell or organism derived from a parental organism, with modern biology referring to the term as a collection of cells derived from the same cell that remain identical. In the classical instance, the use of recombinant DNA provides the initial cell from which the host organism is then expected to recapitulate when it undergoes further cell division, with bacteria remaining a prime example due to the use of viral vectors in medicine that contain recombinant DNA inserted into a structure known as a plasmid. Plasmids are extrachromosomal self-replicating circular forms of DNA present in most bacteria, such as Escherichia coli (E. Coli), containing genes related to catabolism and metabolic activity, and allowing the carrier bacterium to survive and reproduce in conditions present within other species and environments. These genes represent characteristics of resistance to bacteriophages and antibiotics and some heavy metals, but can also be fairly easily removed or separated from the plasmid by restriction endonucleases, which regularly produce "sticky ends" and allow the attachment of a selected segment of DNA, which codes for more "reparative" substances, such as peptide hormone medications including insulin, growth hormone, and oxytocin. In the introduction of useful genes into the plasmid, the bacteria are then used as a viral vector, which are encouraged to reproduce so as to recapitulate the altered DNA within other cells it infects, and increase the amount of cells with the recombinant DNA present within them.The use of plasmids is also key within gene therapy, where their related viruses are used as cloning vectors or carriers, which are means of transporting and passing on genes in recombinant DNA through viral reproduction throughout an organism. Plasmids contain three common features—a replicator, selectable marker and a cloning site. The replicator or "ori" refers to the origin of replication with regard to location and bacteria where replication begins. The marker refers to a particular gene that usually contains resistance to an antibiotic, but may also refer to a gene that is attached alongside the desired one, such as that which confers luminescence to allow identification of successfully recombined DNA. The cloning site is a sequence of nucleotides representing one or more positions where cleavage by restriction endonucleases occurs.[1] Most eukaryotes do not maintain canonical plasmids; yeast is a notable exception. In addition, the Ti plasmid of the bacterium Agrobacterium tumefaciens can be used to integrate foreign DNA into the genomes of many plants. Other methods of introducing or creating recombinant DNA in eukaryotes include homologous recombination and transfection with modified viruses.